
www.manaraa.com

Computing (2013) 95:785–816
DOI 10.1007/s00607-013-0295-3

Development of global specification for dynamically
adaptive software

Yongwang Zhao · Zhuqing Li · Hualei Shen ·
Dianfu Ma

Received: 13 March 2012 / Accepted: 9 January 2013 / Published online: 1 February 2013
© Springer-Verlag Wien 2013

Abstract As software systems are becoming increasingly complex, they need to
dynamically and continually adapt their behavior to changing conditions in the long-
term running. There will be large numbers of adaptations in these systems when
evolving and the adaptations may be unknowable until system operation. To specify
these adaptations, this paper proposes the mode-supported Linear Temporal Logic
(mLTL) that is an effective way to describe global specifications of adaptive software.
The global specifications are defined for adaptive software as requirements from the
perspective of global adapting process. The model checking problem of mLTL is also
resolved using Linear Temporal Logic (LTL) and Labelled Transition System Analyser
(LTSA). Finally, we provide a prototype implementation for modelling and analyzing
adaptive programs, and experimental evaluation shows feasibility and scalability of
our approach.

Keywords Autonomic computing · Dynamic adaptation · Formal specification ·
Verification

Y. Zhao (B) · Z. Li · H. Shen · D. Ma
National Laboratory of Software Development Environment (NLSDE),
School of Computer Science and Engineering, Beihang University,
Haidian District, Beijing, China
e-mail: zhaoyw@act.buaa.edu.cn

Z. Li
e-mail: lizq@act.buaa.edu.cn

H. Shen
e-mail: shenhl@act.buaa.edu.cn

D. Ma
e-mail: dfma@buaa.edu.cn

123

www.manaraa.com

786 Y. Zhao et al.

Mathematics Subject Classification (2000) 68N30 Mathematical aspects of
software engineering (specification, verification, metrics, requirements, etc).

1 Introduction

To decrease cost and time of human supervision for continue operation, computer soft-
ware must modify its structure and behavior dynamically in response to the changes
in its execution environment [41]. Such a modification is commonly referred to as
dynamic adaptation. Being highly complex, adaptive programs are generally more
difficult to be specified, verified, and validated. Assurance of high dependability
of these programs would thus be a great challenge [33]. Correctness of adaptive
programs becomes very crucial, especially when they are applied in safety-critical
domains. The adaptive program must be ensured that it functions correctly during
and after adaptations. Effective and precise specification development and assur-
ance for adaptation are key issues for dependable adaptive software. On the other
hand, software systems are becoming increasingly complex systems characterized
by thousands of platforms, sensors, decision nodes, etc., connected through het-
erogeneous wired and wireless networks [38]. They have diverse and changeable
requirements, and software failures are unavoidable. Therefore, there will be large
numbers of adaptations in these systems when evolving and adaptations may be
unknowable until system operation. The transitional specification that focus on the
adaptation from one behavior to another of the adaptive software at one moment
could not easily deal with the continuous running and evolution of these complex
software systems. New specifications that are able to effectively specify adaptive
software focusing on the global process of all adaptations are needed. They should
be independent on the explicit adapting process and be able to specify continu-
ous adaptations unknowable at design time. In this paper, they are called global
specification for complex software systems, including the specifications for main-
tainability, survivability and recoverability, etc. The global specification concerns
the temporal relationship of multiple adaptations on the adapting process. Devel-
opment and assurance of them is a challenge for adaptive software. New effec-
tive specifying and verifying approaches are needed for high dependability of these
systems.

The adaptive system and its behavior have been formalized to clarify key
notions that can help to specify the adaptive system, the context or environ-
ment, and the subject [13,14]. Bradbury et al. [12] surveyed numerous research
efforts to formally specify the dynamically adaptive software. Most of research
works [23,29,33,37] have focused on the structural changes of adaptive software.
Few efforts have formally specified the behavioral changes of adaptive software.
Zhang et al. [47–49] proposed a model-based development approach for dynami-
cally adaptive software. Biyani and Kulkarni [10] discussed an approach to model
and verify dynamic adaptation in distributed systems. These approaches focus on
the transitional specification including properties of the source program, the tar-
get program and the adaptation between them. Their approaches are explicit to the
adapting process of the adaptive program. This leads to the difficulty to specify

123

www.manaraa.com

Development of global specification 787

the adaptations unknowable at design time and the inefficiency for large amount
of adaptations. Goal-based modeling [20,24,36,46] has also been used for spec-
ifying dynamically adaptive software. A common feature of these works is that
they assume that all adaptation choices are known and enumerated at design time.
When adaptations in the complex software systems are unknowable at design
time, developers could not use these models to specify and analyze adaptive
programs.

This paper focuses on formally developing the global specifications for the behav-
ioral adaptation of adaptive programs. Our approach assumes an universal model of
adaptive programs. We consider that adaptive programs have different behavioral
modes for different operation contexts and a non-adaptive program (briefly program)
labelled with a name is used to present the software behavior in each mode. The adapta-
tion is the behavioral transition from one mode to another. We use finite state machine
(FSM) to formally describe our model by the reason of FSM’s universality. Different
from the transitional specification, the global specification are temporal properties on
sequences of behavioral modes and adaptations. For instance, the property holds on all
behavioral modes or will hold on one behavioral mode eventually. To specify the global
requirements of adaptive programs, we introduce the mode-supported Linear Tempo-
ral Logic (mLTL), a variant of LTL, by which adaptive programs could be specified
on the behavioral modes on the global adapting process. We adopt LTL style operators
and add mode-related elements for mLTL. mLTL could express the temporal relation-
ship of multiple adaptations on the global adapting process. LTL formulae could be
embedded in mLTL to enable specifying properties of the non-adaptive program, and
the global specification is constructed by composition of these LTL properties using
mLTL operators. To reuse LTL properties predefined on non-adaptive programs and
mature model checking tools, we normalize the adaptive programs and propose the
global semantic of them according to the mLTL semantics. This enables mLTL model
checking based on available LTL model checkers. Then, the mLTL model checking
could be done by three steps: (1) extract LTL local properties of the non-adaptive
program and translate the mLTL property to an LTL formula, (2) checking local prop-
erties on each non-adaptive program, and (3) checking the LTL formula from (1) on a
transition system constructed by the global semantic and the result of step (2). We use
Finite State Process (FSP) [28] and Labelled Transition System Analyser (LTSA)1 to
implement our approach in a prototype, Modelling and Analysis Tool for Adaptive
Programs (MATAP).

A key contribution of our approach is the global specifications for adaptive software.
They provide a novel way to specify adaptive programs from a new perspective.
Transitional specification is between two explicit non-adaptive programs. To specify
the requirements of adaptive programs, it assumes that all adaptation choices are
known in advance. To a certain extent, mLTL does not require all possible alternative
adaptations to be designed during requirements engineering. mLTL is independent on
the global adapting process, and requirements of adaptive programs could be specified
by mLTL before the adpating process is known. We believe that it is sufficiently

1 http://www.doc.ic.ac.uk/ltsa/.

123

http://www.doc.ic.ac.uk/ltsa/

www.manaraa.com

788 Y. Zhao et al.

effective for continuous evolution and unknowable behavior when designing complex
software systems in the future. Therefore, mLTL is able to specify the program behavior
unknowable before system operation and could be applied for runtime verification
[7,11,32]. mLTL and other approaches can be used in a complementary fashion to
specify adaptive software.

The rest of the paper is structured as follows. In Sect. 2, we state the background and
motivate our paper. Section 3 introduces the formal model of our approach. mLTL and
its model checking approach are discussed in Sects. 4 and 5 respectively. We introduce
our MATAP prototype implementation and evaluate our approach in Sect. 6. Section 7
compares this paper with related works. The last section concludes this paper and
discusses future research directions.

2 Background and motivation

To justify our approach, we first introduce what the adaptive program is, and introduce
the existing categories of its properties. We also motivate our paper by illustrating a few
of basically global properties and analyzing why existing approaches are not effective.

2.1 Adaptive program and specification

A dynamically adaptive program operates in different behavioral modes and transits
from one mode to another at runtime in response to changes of context. Therefore,
an adaptive program usually contains multiple non-adaptive programs and multiple
adaptations connecting these programs [47]. Each of these programs exhibits a dif-
ferent steady-state behavior [1], and operates in a different mode. An adaptation is a
projection of the adaptive program behavior from one steady-state behavior to another
by transitions. Figure 1 illustrates an adaptive program which has three programs and
two adaptations among them.

The correctness of adaptive programs cannot be properly addressed without pre-
cisely specifying the requirements for adaptation. Existing researches mostly consider

Fig. 1 An adaptive program and its specifications

123

www.manaraa.com

Development of global specification 789

the transitional specification instead of the global specification. Typically, Zhang et
al. [48,49] classified the properties of the adaptive program into three categories as
follows. These properties are generally used to define the transitional specification of
the adaptive program, not the global specification.

– Local properties: properties define the specification of a specific non-adaptive
program. They specify the steady-state behavior of an adaptive program operat-
ing in a behavioral mode. They may be such properties as safety, liveness, and
invariants, etc.

– Transitional properties: properties that hold during the adaptation process. They
specify the dynamic adaptation between two non-adaptive programs, and should
be satisfied during interval state when the adaptive program is being adapted from
one behavioral mode to another.

– Global invariants: properties to be satisfied by the adaptive program throughout
its execution. They consider steady-state behaviors and adaptations as a whole
regardless of the adaptations.

The scopes of these categories of properties are presented in the lower part of Fig. 1.
Linear Temporal Logic (LTL) is a widely used temporal logic to specify systems.

LTL expresses properties of state paths of programs viewed as sets of executions. LTL
formulae over the set AP of atomic proposition are formed according to the following
grammar:

ϕ : : = true | α | ϕ1 ∧ ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2 (1)

whereα ∈ AP . Other operators are defined based on these operators, such as∨(or),→
(imply),↔ (coimply),♦(eventually) and �(always), etc. The local properties can
be specified by LTL directly. Verification of these properties is carried out on the
state sequence of a non-adaptive program. The global invariants can also be specified
by LTL. To specify the transitional properties, Zhang and Cheng [48] proposed the

A-LTL by extending LTL with the adapt operator (
Ω
⇀). They formally define A-LTL

as follows:

– If φ is an LTL formula, then φ is also an A-LTL formula.

– If φ and ϕ are both A-LTL formulae, then φ
Ω
⇀ ϕ is an A-LTL formula.

– If φ and ϕ are both A-LTL formulae, then ¬φ, φ ∧ ϕ, φ ∨ ϕ, φUϕ are all A-LTL
formulae.

The A-LTL semantics are defined as follows:

– If σ is an infinite state sequence and φ is an LTL formula, then σ � φ in A-LTL
if and only if σ � φ in LTL.

– If σ is a finite state sequence and φ is an A-LTL formula, then σ � f φ iff σ ′ � φ,
where σ ′ is an infinite state sequence constructed by repeating the last state of σ .

– σ � φ
Ω
⇀ ϕ iff there exists a finite state sequence σ ′ = (s0, s1, ..., sk) and an

infinite state sequence σ ′′ = (sk+1, sk+2, ...), such that σ = σ ′ � σ ′′, σ ′ � f in

φ, σ ′′ � ϕ, and (sk, sk+1) � f in Ω , where φ, ϕ and Ω are A-LTL formulae.
– Other operators are defined similarly as those used in LTL.

123

www.manaraa.com

790 Y. Zhao et al.

Simply saying that an adaptive program satisfies φ
Ω
⇀ ϕ, if this program ini-

tially satisfies φ, and in a certain state A, it stops being constrained by φ, then
in the next state B, it starts to satisfy ϕ. And the two-state sequence (A, B) sat-
isfies Ω . For instance, in the adaptive TCP routing protocol in [49], only trusted
nodes are selected for packet delivery in “safe” configuration and any packet must be
encrypted before being transferred to an untrusted node in “normal” configuration.
The transitional property that must be satisfied by executions adapting from “safe”
configuration to “normal” configuration could be expressed by the A-LTL formula

�(!unsa f e)
true
⇀ �(unsa f e→ (!sent U encrypted)).

After introducing the adaptive program and existing approaches to specify them,
we will motivate our approach in next subsection by stating the global specification
and why the existing approaches are not suitable for this specification.

2.2 Motivation

Software systems are becoming increasingly complex systems characterized by thou-
sands of platforms, sensors, decision nodes, etc., connected through heterogeneous
wired and wireless networks [38]. These ultra-large-scale(ULS) systems will be devel-
oped and used by a wide variety of stakeholders and requirements may be unknowable
until system operation. Software and hardware failures will be the norm rather than
the exception, and people will not just be the users but also the elements of the sys-
tem. These facts cause continuous evolution for systems, and adaptability becomes
increasingly important. Assurance of system requirements at the macro level such
as maintainability, survivability and recoverability, etc., is a challenge for dynamic
adaptation.

The complex software systems will be in service for a long time, and there will be an
increasing need to integrate new capabilities while they are operating. The system will
be evolving not in phases, but continuously to meet new and modified requirements
and to incorporate new technologies. Moreover, the adaptation and its target behavior
of the adaptive program may be unknowable until system operation. Therefore, there
may be large amount of (unknowable) adaptations in these systems when evolving.
We define global specifications as the requirement for adaptive programs from the
perspective of adapting process at the macro level. For instance, the degraded system
functions dealing with encountering errors will eventually be upgraded after some
adaptations. There exist a few of basically global properties for adaptive programs
based on the taxonomy of dependable computing [3]:

– Reachability: it means that the adaptive program will eventually running as a
behavioral mode. Formally, an LTL property will hold on a non-adaptive program
eventually when an adaptive program is evolving.

– Safety: it means absence of catastrophic behavior for the adaptive program. For-
mally, an LTL negative property will never hold on any program when the adaptive
program is evolving.

– Maintainability: it means the ability to undergo modifications and repair. In
the adapting process of an adaptive program, if a negative property holds on a

123

www.manaraa.com

Development of global specification 791

non-adaptive program, which means that the system has some error, it will even-
tually be repaired on one of its subsequent programs.

– Integrity: it refers to the absence of improper system adaptation. There does not
exist such a program that a negative property holds on it and another negative
property holds on one of its immediately succeeding programs.

After analyzing the global specification, we could find that the approach to specify
adaptive programs considering the global process of all adaptations should not require
all possible alternative adaptations to be specified during requirements engineering.
It needs to support specifying requirements of adaptive programs before the adapting
process is known. Second, since there may be a large amount of adaptations in the
adaptive program, this approach should be effective and avoid its dependence on the
explicit adapting process. It should have operators to traverse the possible adapting
processes.

We could find that the three categories of properties in Sect. 2.1 for adaptive
programs will be exhausted in this case. A-LTL extends LTL with the adaptor to
support transitional specification of adaptive programs. But it does not have direct
notation support for global specification. It is both too complex and inconvenient
for our purposes. First, A-LTL is explicit to the adapting process of the adaptive
program [49]. The temporal relationship of multiple adaptations considering the
global process of all adaptations is difficult to be specified. Second, A-LTL is not
effective for large amount of adaptations. For example, if we want to express a
very simple property, the reachability of the behavioral mode satisfied by S P EC
in an adaptive program that has three non-adaptive programs and two adaptations,
then in mLTL we write ♦m[S P EC] as discussed later, which directly captures the

intent. The equivalent A-LTL formula is (S P EC
true
⇀ true

true
⇀ true) ∨ (true

true
⇀

S P EC
true
⇀ true) ∨ (true

true
⇀ true

true
⇀ S P EC), which is much more cumber-

some. If the adaptive program has large amount of non-adaptive programs, A-LTL
is exhausted for the reachability. LTL is more cumbersome than A-LTL on this
problem, because A-LTL is at least exponentially more succinct than LTL in spec-
ifying transitional properties [49]. If we want to express the maintainability or
integrity of adaptive programs, the LTL or A-LTL formula will be too complex to
be understood.

These reasons lead us to propose the mLTL which is sufficiently effective
for continuous evolution and unknowable behavior when designing complex soft-
ware systems in the future. mLTL is able to specify the program behavior
unknowable before system operation. Although LTL is not effective for the global
specification, the properties specified by LTL are independent with the state
trace of a program and LTL’s operators can traverse each state trace. There-
fore, mLTL adopts similar operators of LTL. mLTL could express the temporal
relationship of multiple adaptations considering the global process of all adap-
tations. Since mLTL and A-LTL focus on global and transitional specifications
respectively, they can be used in a complementary fashion to specify adaptive
software.

For the global specification, formal model of adaptive programs should have the
ability to distinguish different non-adaptive programs. We use the concept “mode”,

123

www.manaraa.com

792 Y. Zhao et al.

adopted from mode change [9] in real-time system, to present each program which can
be considered as a behavioral mode of an adaptive program. Secondly, specification
language of dynamic adaptation needs to support mode, and its operators are able to
traverse mode space of adaptive programs. The next section presents the formal model
of dynamic adaptation, and Sect. 4 discusses the mode-supported linear temporal logic.

3 Formal model

In this section, we first introduce a formal model for adaptive programs. We use the
FSM to represent an adaptive system. Then we use Adaptive Communication Protocol
(ACP) as an illustrative example to demonstrate the formal model and our specification
approach in the following sections.

3.1 Adaptive programs

We consider that an adaptive program consists of multiple non-adaptive programs
and adaptations among them. Each of these programs exhibits a different steady-
state behavior that can be presented by an FSM [26]. In FSM, actions trigger the
transition between program states. The trace sets of actions and paths of states are
considered as behavior at runtime. These FSMs present non-adaptive programs at
different behavioral mode. When the context changes, adaptive programs will transit
their behavior from one FSM to another and these transitions are adaptations.

We use FSM to define the non-adaptive program and adaptive program.

Definition 1 (Non-adaptive program) A non-adaptive program P is a finite state
machine. P is a tuple 〈v, S, Act, σ, s0, AP, L〉, where

– v: name of this program
– S: a set of states
– Act : a set of actions
– σ : S × Act → S is a state transition relation
– s0 ∈ S is the initial state
– L : S→ 2AP is a labelling function.

The labelling function L maps each state to a set of atomic propositions. s ∈ S
is a state name, and L represents the logic state. (s, a, s′) ∈ σ is a transition, where
s, s′ ∈ S and a ∈ Act . If P has a transition (s, a, s′), it means that a is enabled in
state s, and execution of action a in state s will lead to state s′. We only consider the
deterministic behavior, and if (s, a, s′), (s, a, s′′) ∈ σ then s′ = s′′.

To enable mLTL model checking later, we add the name of the non-adaptive program
to its states as the flag proposition to identify the state’s current mode. Thus, labelling
function L will maps each state to a proposition to indicate the mode that current state
belongs to.

We represent the name, the states, the actions, the transitions, the initial state, and the
labelling function of a given program P with v(P),S(P), Act (P),σ (P), s0(P), L(P),
respectively.

123

www.manaraa.com

Development of global specification 793

The whole behavior of an adaptive program consists of a set of non-adaptive pro-
grams and it can also be described by a finite state machine.

Definition 2 (Adaptive program) An adaptive program AP is a finite state machine.
AP is a tuple 〈A, E, ϕ,P0〉, where

– A: a set of non-adaptive programs, with each of them being a mode, and for each
program Pi ∈ A,Pi = 〈vi , Si , Acti , σi , s0i , APi , Li 〉

– E : a set of adaptations
– P0 ∈ A is the initial program of AP
– ϕ : A ×⋃

P∈A S(P) × E → A ×⋃
P∈A S(P) is the adaptation relation, where⋃

P∈A S(P) is the set of all states of programs in A. For each (P, s, e,Q, t) ∈
ϕ, s ∈ S(P) and t ∈ S(Q).

To conveniently present the adaptation as transitions, we replace the adaptation that
is a transition set as Adaptation in Fig. 2 by adaptations, each of which is a transition,
such as e11, e12.

The names of all programs in AP must be different from each other. Adaptation
is a switch between two programs. We do not consider the causes of adaptation and
only use adaptation to model this behavior. An adaptation is an action which switches
the behavior from one state in a program to one state in another program. We only
consider the deterministic adaptation and if (Pi , s, e,P j , s′), (Pi , s, e,Pk, s′′) ∈ ϕ
then P j = Pk and s′ = s′′. For determinism, the initial programs set of AP is a single

Fig. 2 Adaptation of SENDER by adding/removing DES64e filter

123

www.manaraa.com

794 Y. Zhao et al.

program. Moreover, if (Pi , s, e,P j , s′) ∈ ϕ then Pi �= P j . It means that adaptation
from one state to another state on the same program is forbidden.

We represent the non-adaptive programs, the adaptations, the initial program, and
the adaptation relations of a given adaptive program AP with A(AP), E(AP),
P0(AP), ϕ(AP), respectively.

3.2 The ACP study case

To illustrate our approach clearly in the following sections, a study case is intro-
duced here. With large-scale deployment of wireless communication services and
advances in handheld computing devices, distributed applications are sensitive to
the heterogeneity of the devices and networks where they are deployed on. Adapt-
ing the communication substrate at runtime is one of the key challenges in design-
ing these systems. We illustrate a study case, Adaptive Communication Protocol
(ACP) that is a revisited version of the one used for example in [48,49], to demon-
strate our approach for dynamic adaptation. We use an alternating bit for reliabil-
ity. Filters that manipulate the data stream can be inserted or removed dynamically
at runtime in response to the external conditions as implemented by MetaSocket
[40].

ACP consists of four adaptive programs, SENDER, RECEIVER, S2R, and R2S.
We have five filters, a data compression filter (DCM), a data decompression filter
(DDM), a DES 64-bit encryption filter (DES64e), a DES 128-bit encryption filter
(DES128e), and a DES decryption filter (DESd) capable of DES 64-bit and DES
128-bit decryption. The DCM, DES64e and DES128e filters can be configured on
SENDER and others on RECEIVER. S2R and R2S are unreliable communication
channels on which message losses may occur. To ensure the performance of ACP, data
compression/decompression filters can be inserted and removed with the change in
the size of communicating data. The encryption/decryption filters are configured by
different security requirement.

The program Normal without filters, the program DES64 with DES64e filer
of SENDER, and the adaptation between them are depicted in Fig. 2. Finite state
machine is used to present the program behavior in this paper. In Normal pro-
gram, the initial state of SENDER is waiting for data input (get0). After getting
data (gd), it transits to be ready for sending data (send0). Then it sends data to
RECEIVER (sd0). 0 is the alternating bit. After sending data, it transits to be
waiting for acknowledgement (wfa0) from RECEIVER. If RECEIVER acknowl-
edges correctly (ack0), it will prepare to get another data (get1). If data loss hap-
pens on the channel, SENDER will resend the old data. If the acknowledge is not
bit 0, SENDER will keep on waiting for correct acknowledgement. After insert-
ing the DES64e filer, SENDER is ready to encrypt data (DES64e0) after get-
ting data. The encrypting action e64d encrypts the data and transmits SENDER
to be ready to send it. In RECEIVER side, the received data should be decrypted
before being delivered to the user. If error occurs in data decrypting (dcerr0),
RECEIVER needs to receive the data again and SENDER should encrypt the data
again.

123

www.manaraa.com

Development of global specification 795

Fig. 3 Programs and adaptations of ACP

All programs and adaptations of ACP are illustrated in Fig. 3. We omit the detailed
behavior and use a circle with a program name to represent each of them. Although
there may exist more than one adaptation from Normal to DES64 program, such as
e11 and e12 in Fig. 2, we depict only one adaptation e1 for simplicity in Fig. 3.

4 Mode-supported Linear Temporal Logic

Following the formal model of adaptive programs, this section presents different types
of traces in adaptive programs at first. Based on these traces, a new Linear Temporal
Logic, mLTL, and its semantics are introduced. We use mLTL to specify the global
requirements of ACP to illustrate our approach.

4.1 Traces of adaptive programs

The traces of a finite state machine are sequences of states. The states themselves are
not observable, but just their atomic propositions are observable. Traces represent the
possible executions of a state machine and can be also used to specify linear temporal
properties [4]. An adaptive program in this paper has two types of traces, state traces
and mode traces.

State traces represent the behavior of non-adaptive programs and adaptations in an
adaptive program. Thus, they can be classified into two categories. The first category
is the non-adaptive state trace, which is the execution of non-adaptive programs. All
states in this trace belong to a non-adaptive program. The second is the adaptive state
trace, which is the concatenation of non-adaptive state traces of different non-adaptive

123

www.manaraa.com

796 Y. Zhao et al.

programs. This trace describes the adaptive behavior. States in the adaptive state trace
may transit from one program to another.

Each non-adaptive state trace in an adaptive state trace is called a “interval”.
An adaptive state trace t = s0s1s2 . . . (where s0, s1, s2, . . . are state labels) may
have n(n > 0) intervals labelled with i1, . . . , in respectively. If we use ĩ to denote
the corresponding non-adaptive state trace of the interval i , the adaptive state trace
t = ĩ1 � ĩ2 � . . . � ĩn is the concatenation of the state sequence of its intervals. To
specify the global properties for adaptive programs, we propose “mode trace” to rep-
resent the evolution process of an adaptive program when it is adapting continuously.
For an adaptive state trace t which has n intervals labelled with i1, . . . , in respectively,
the corresponding mode trace is represented as i1i2i3 . . . in .

A non-adaptive state trace is depicted in Fig. 4a, in which each state belongs to
the non-adaptive program Normal. Labels under the state circle are state names,
and propositions hold on each state are shown above it. An adaptive state trace is
depicted in Fig. 4b, in which there exists an adaptation between non-adaptive state
traces of program Normal and DES64. For convenience, we also use the non-adaptive
program’s name to denote the interval name. The first two intervals of this adaptive state
trace are labelled with “Normal” and “DES64” respectively, and the state sequence
of interval Normal is get0send0w f a0get1. The mode trace of this adaptive state
trace is shown in Fig. 4c. The circle denotes a program, and the label under it is
the program’s name. Arrows between circles refer to adaptations. Different from the
atomic propositions on each state of state traces, the propositions on each program
in mode traces are whether an LTL formula satisfied on the state sequence of this
interval. In Fig. 4c, LTL properties χ1, χ2 and χ3 hold on the first program of the mode
trace.

(a)

(b)

(c)

Fig. 4 State traces and mode traces

123

www.manaraa.com

Development of global specification 797

4.2 Syntax and semantics of mLTL

This subsection describes the syntax and semantic of mLTL. Mode traces are linear
temporal and we adopt the LTL style formulae to define mLTL. mLTL formulae are
formed according to the following grammar:

κ : : = true | [χ] | @v | κ ∧ κ | ¬κ | ©mκ | κUmκ (2)

where χ is an LTL formula, and v is a mode name. Other operators such as ∨(or),→
(imply),↔ (coimply) can also be derived from above operators.

The precedence order on the operators is as follows. The [] and @ operators take
precedence over any others. The unary operators take precedence over the binary ones.
¬ and©m have same precedence. The temporal operator Um takes precedence over
∧,∨, and→.

To define the mLTL semantics, we first give the notation of LTL satisfaction on the
infinite and finite state trace as follows:

– If the adaptive state trace t is infinite and φ is an LTL formula, then t satisfying φ
is formally denoted as t � φ.

– If t is finite and φ is an LTL formula, then t � f in φ if and only if t ′ � φ, where t ′
is the infinite state trace constructed by repeating the last state of t .

Let t = s0s1s2 . . . be an adaptive state trace with n intervals i1, i2, . . . in . The mode
trace mt of t is i1i2 We define mLTL semantics as follows:

– t � true.
– t � [χ] if and only if mt �m [χ].
– t � @v if and only if mt �m @v.
– t �©mκ if and only if mt �m ©mκ .
– t � κ1Umκ2 if and only if mt �m κ1Umκ2.
– t � κ1 ∧ κ2 if and only if t � κ1 and t � κ2.
– t � ¬κ if and only if ¬t � κ .
– mt �m true.
– mt �m [χ] if and only if i1 �m [χ], which means ĩ1 � f in χ .
– mt �m @v if and only if i1 �m @v, which means ĩ1 � f in �v.
– mt �m κ1 ∧ κ2 if and only if mt �m κ1 and mt �m κ2.
– mt �m ¬κ if and only if ¬mt �m κ .
– mt �m ©mλ if and only if mt ′ �m λ, where mt ′ = i2i3
– mt �m κ1Umκ2 if and only if for some j = 1, 2, . . . , i j �m κ2 and i1 �m

κ1, . . . , i j−1 �m κ1.

As in LTL, the temporal operators of eventually and always on mode traces can
be derived as follows:

♦mκ
de f= [true]Umκ (eventually) (3)

�mκ
de f= ¬♦m¬κ (always) (4)

123

www.manaraa.com

798 Y. Zhao et al.

As a result, the following intuitive meaning of ♦m and �m is obtained. ♦mκ ensures
that κ will be true eventually in the future. �mκ is satisfied if and only if it is not the
case that eventually ¬κ holds on the mode trace. This is equivalent to the fact that κ
holds from now on forever. For instance, ♦m[χ] ensures that the LTL formula χ will
hold eventually on one program in the mode trace, while �mχ ensures that χ is held
on all programs in the mode trace. Other

Specially, we introduce the formula @v for the properties on program v or related
programs. By this formula, global properties can be specified on special modes.

κ1 = �m(@v→ [χ]) (5)

κ2 = �m(©m(@v)→ κ) (6)

κ3 = �m(@v→©mκ) (7)

κ4 = �m(([true]Um@v)→ κ) (8)

For instance, the mLTL formula κ1 (Eq. 5) holds on a mode trace, if χ holds on pro-
grams named v. Moreover, properties on predecessor and successors of one program
on mode traces may be presented. The mLTL formula κ2 (Eq. 6) assures that mLTL for-
mula κ holds on directly preceding programs of v. While the mLTL formula κ3 (Eq. 7)
assures that κ holds on directly successive programs of v. Beside the direct predecessor
and successors of a program, all preceding programs can be expressed by the mLTL
formula κ4 (Eq. 8) which assures that κ holds on all preceding programs of v. However,
the all successive programs could not be presented without Past operators [8].

The transitional properties could also partially be expressed by mLTL. The A-LTL

[48] use φ
true
⇀ ϕ to specify a program that initially satisfies φ, and in a certain state

A, it stops being constrained by φ, then in the next state B, it starts to satisfy ϕ. We
use the mLTL formula [φ] ∧ ©m[ϕ] to specify this program. The state trace has two
intervals. The state sequence of the first interval satisfies the LTL formula φ and the
second satisfies the LTL formula ϕ.

4.3 Global specification of ACP

We specify some global properties of ACP to illustrate mLTL.
For program Normal in Fig. 3, one global property is that SENDER should even-

tually send the data to RECEIVER once SENDER gets it from data source before
any other adaptation occurs. This property can be specified by mLTL as below:

κ = �m(@Normal → [�(I N PU T → ♦SE N T)]) (9)

Another property of program Normal is that SENDER can infinitely often input
data before any other adaptation occurs. This property can be specified by mLTL as
below:

κ = �m(@Normal → [�♦(I N PU T)]) (10)

123

www.manaraa.com

Development of global specification 799

A global property of ACP to ensure that the data will be sent eventually before any
other adaptation occurs is

κ = �m[�(I N PU T → ♦SE N T)] (11)

which means that SENDER should eventually send the data to RECEIVER once it
gets it from data source on all programs.

A global property to ensure that if the program could not infinitely often input data
before any other adaptation occurs, its next program could do that. This property is
formulized as below:

κ = �m[[!�♦I N PU T] → ©m[�♦I N PU T]] (12)

A global property of reachability is that SENDER will eventually reach a program
in which data are compressed before any other adaptation occurs. This property is
formulized as below:

κ = ♦m[�(I N PU T → ♦D AT AC O M P RS)] (13)

In such a program, once input, the data will be compressed eventually before any other
adaptation occurs.

A global property of safety is that SENDER will never reach a program in which
data are encrypted by DES64e and DES128e filters simultaneously before any other
adaptation occurs. This property is formulized as below:

κ = �m[�((DE S64E NC D→ ¬♦DE S128E NC D) (14)

∧(DE S128E NC D→ ¬♦DE S64E NC D))]

In each program, there does not exit such a state on which the data, after having been
processed by a DES 64-bit encryption filter, will be processed by another DES 128-bit
encryption filter, or versa.

A global property of maintainability is that a program with data encryption error
will be eventually repaired. This property is formulized as below:

κ = �m([�(I N PU T → ♦E NC RY P E R R)] → (15)

♦m[�(I N PU T → ♦SE N T)])

We consider that data encryption error always occur in a program, when a decryption
error will eventually occur (E NC RY P E R R) after data inputting (I N PU T) before
any other adaptation occurs. If there is a program in which data encryption error
always occur, it will eventually be repaired, which means that the input data will be
sent successfully (♦SE N T) before any other adaptation occurs.

123

www.manaraa.com

800 Y. Zhao et al.

5 mLTL model checking

In this section, we address the model checking problem for mLTL. The starting point
is an adaptive program AP and an mLTL formula κ . The problem is to check whether
AP |� κ . If κ is refuted, an error trace will be provided for debugging purpose.

As discussed in Sect. 4, the adaptive state trace of the adaptive program has many
intervals according to different non-adaptive program. The mLTL semantics on the
state trace could be interpreted by mLTL semantics on the mode trace. The mLTL
model checking could be decomposed into LTL checking on the state sequence of
intervals and mLTL checking on the mode traces of the adaptive program. This char-
acteristic enables mLTL model checking based on LTL and mature model checking
tools. Firstly, the non-adaptive program may exhibit different behaviors because of
multiple adaptations from or to this program. We should first normalize them to ensure
that different behaviors of a non-adaptive program are decomposed into different non-
adaptive programs and LTL checking on the state sequence of intervals could be done
on the generated non-adaptive programs. We prove the trace equivalence between
the adaptive program and its normalization. Secondly, a different semantic for the
adaptive program, the global semantic, is proposed to support mLTL checking on the
mode traces. Then, the mLTL model checking could be done by three steps: (1) extract
LTL properties of the non-adaptive programs from the mLTL formula and translate
the mLTL formula to an LTL formula, (2) checking LTL properties from (1) on each
non-adaptive program, and (3) checking the LTL formula from (1) on a transition
system constructed by the global semantic and the result of step (2). We also prove
the correctness of our approach.

This section discusses how to normalize the adaptive program, and then the global
semantic of the adaptive program. Finally, the LTL-based model checking approach
is presented.

5.1 Normalization of adaptive programs

In the formal model of the adaptive program, the non-adaptive program may exhibit
different behaviors because of the adaptations. For instance, there exists an adaptation,
(Pi , si , ei ,Pk, s) ∈ ϕ. This adaptation implies that the adaptive program will run as
the behavior of Pk after adaptation ei , but the initial state of Pk is changed to s. On
the other hand, this adaptation also changes the behavior of Pi . The behavior of Pi

terminates in the state si and switches to Pk .
For instance, the adaptations e12 and e22 in Fig. 2 lead to the starting state get1

in DES64 program and get1 in Normal program respectively, and the ending state
get1 in Normal program and get1 in DES64 respectively.

The Normal program will exhibit four different behaviors:

– Normal1, in which get1 is the starting state and get0 is the ending state. All of
non-adaptive state traces of Normal1 are like get1send1...get0, start from get1
and end at get0.

– Normal2, in which get0 is the starting state and get0 is also the ending state. All
of non-adaptive state traces of Normal2 are like get0...get0, start from get0 and
end at get0.

123

www.manaraa.com

Development of global specification 801

Fig. 5 Adaptation graph of adaptations between Normal and DES64 programs

– Normal3, in which get0 is the starting state and get1 is the ending state. All of
non-adaptive state traces of Normal3 are like get0send0...get1, start from get0
and end at get1.

– Normal4, in which get1 is the starting state and get1 is also the ending state. All
of non-adaptive state traces of Normal4 are like get1...get1, start from get1 and
end at get1.

Different behaviors and adaptations between Normal and DES64 programs are
shown in Fig. 5.

The objective of “Normalization” is to ensure that each non-adaptive program
exhibits only one behavior. That means (1) all state traces of a non-adaptive program
start from the only one state and end at another only one state. (2) the starting state is
the initial state of the non-adaptive program. (3) the source state of an adaptation is the
ending state of the source non-adaptive program and the target state of the adaptation is
the starting state of the target non-adaptive program. Formally, for each non-adaptive
program P in the normalized adaptive program, if (Pi , si , ei ,P, s) ∈ ϕ, then s is the
starting state of P , and if (P, s′, e j ,P j , s j) ∈ ϕ, then s′ is the ending state of P .

To normalize adaptive programs, we first define a function to denote the behavior
of a non-adaptive program in which the starting and ending states are designated.

Definition 3 (normalize function) The normalize function for the adaptive program
is Δ : Θ × Λ × Λ→ Θ , where Θ is the set of all non-adaptive programs and Λ is
the set of all states.

Given P = 〈v, S, Act, σ, s0, AP, L〉, the normalize function Δ(P, s, t) =
〈v, S, Act, σ, s, AP, L〉 where s, t ∈ S(P) and s �= t . We use the label

−→Pst to denote
the normalized non-adaptive program P with starting state s and ending state t for
convenience.

The behavioral set function BS(P) is used to present possibly different behaviors
of a non-adaptive program, where P is the program and BS(P)maps P to a program
set. The calculation of BS(P) is presented as follows:

BS(P) =

⎧
⎪⎪⎨

⎪⎪⎩

{Δ(P, s, t) | ∃(P1, s1, e1,P, s), (P, t, e2,P2, s2) ∈ ϕ} ∪ {P0}
—–(if P = P0)
{Δ(P, s, t) | ∃(P1, s1, e1,P, s), (P, t, e2,P2, s2) ∈ ϕ}
—–(if P �= P0)

(16)

123

www.manaraa.com

802 Y. Zhao et al.

The initial state s0 of the initial program P0 is a special state for BS(P), if there
does not exist an adaptation from other programs to s0. As an adaptive program starts
running from this state, P0 is in the behavioral set of BS(P0) absolutely.

Based on the definition of behavioral set function, the Normalized Adaptive Pro-
gram is defined as follows.

Definition 4 (normalized adaptive program) The normalized adaptive program of an

adaptive program AP = 〈A, E, ϕ,P0〉, is also an adaptive program, denoted by
−→AP .−→AP = 〈AN , E N , ϕN ,P N

0 〉 where

– AN =⋃
P∈A BS(P).

– E N = E .
– P N

0 = P0.
– ϕN : AN×⋃

P∈AN S(P)×E N → AN×⋃
P∈AN S(P)where

⋃
P∈AN S(P) is the

set of all states of programs in AN . For each adaptation relation (P1, t, e,P2, s) ∈
ϕ, {(
−→
P t ′t

1 , t, e,
−−→
Pss′

2 , s) |
−→
P t ′t

1 ∈ BS(P1), t ′ ∈ S(P1),
−−→
Pss′

2 ∈ BS(P2, s′ ∈
S(P2))} ⊆ ϕN .

If there is an adaptation e from the non-adaptive program P1 (the ending state t)
to P2 (the starting state s) in the original adaptive program, this adaptation will
also connect each non-adaptive program (with ending state t) in BS(P1) to each
non-adaptive program (with starting state s) in BS(P2) in the normalized adaptive
program.

According to the construction process of the normalized adaptive program, we could

find a same state trace in
−→AP for each state trace in AP , and vice versa. Thus, the

adaptive program and its normalization are trace equivalent, as stated in the following
lemma.

Lemma 1 An adaptive program AP is trace equivalent to its normalization
−→AP .

Since trace equivalence of transition systems implies they satisfy the same line-time
properties [4], this lemma implies that the adaptive program and its normalization
satisfy the same line-time properties.

5.2 Global semantic of adaptive programs

The mLTL semantic on the state trace of adaptive program could be interpreted as
mLTL semantic on the mode trace of its normalization. Inspired by this semantic of
mLTL, we propose the global semantic of the adaptive program. To model checking
an mLTL formula κ on the normalized adaptive program AP , we first construct the
global labelled transition system for AP over κ .

Definition 5 (global labelled transition system) Given a normalized adaptive pro-
gram AP = 〈A, E, ϕ,P0〉, the global semantic of AP over an mLTL formula κ is
represented by a global labelled transition system(GLTS), Υ ΨAP = 〈A, E, ψ,P0,L〉,
where

123

www.manaraa.com

Development of global specification 803

– Ψ : the LTL formula set extracted from κ

– ψ : A × E → A is the transition relation. (P1, e,P2) ∈ ψ , if there exists an
adaptation relation (P1, s, e,P2, s′) ∈ ϕ

– L: A→ 2Ψ is a labelling function

When model checking, a GLTS is constructed for each mLTL formula on AP . As
defined in Sect. 4.2, the satisfaction of mLTL on the mode trace is calculated based
on the satisfaction of its LTL properties on the state sequence of intervals. The LTL
formula set (Ψ) will first be extracted from κ . For an mLTL formula, we extract an LTL
formula χ from the [χ] part, and �v from the @v part of the mLTL formula. Then,
each LTL formula will be checked on each program of AP . The labelling function
L indicates that which LTL formula is satisfied on the non-adaptive program. For
instance, 〈P, {χ1, χ2, χ3}〉 ∈ L means that LTL formulae χ1, χ2 and χ3 hold on the
non-adaptive program P .

After normalization, the non-adaptive program has the starting and ending state.
All state traces of the non-adaptive program start from the starting state and end at
the ending state. The starting state could be explicitly defined in the input languages
of model checker, for example FSP of LTSA. To ensure that the ending state is the
final state of each state trace of the non-adaptive program, we should also explicitly
indicate the ending state for LTL model checking on the non-adaptive programs. For
this purpose, we add a state s′i same as the ending state si and a τ transition from si

to s′i and a self-loop τ transition on state s′i . This ensures that the ending state si is
repeated infinitely at the end of the state sequence.

5.3 LTL-based model checking

LTL-based model checking approach transforms the problem of mLTL model checking

on an adaptive program AP to LTL on the GLTS of
−→AP . We first give the transforming

function of the mLTL formula, and prove that the satisfaction of the mLTL formula on

AP is equivalent to the satisfaction of the generated LTL formula on GLTS of
−→AP .

Finally, we give the algorithm of mLTL model checking.

Fig. 6 Transforming function of mLTL formulae

123

www.manaraa.com

804 Y. Zhao et al.

The transforming function of mLTL is defined as T(κ) in Fig. 6. It transforms an
mLTL formula to an LTL formula. Here, a predicate p() is defined. The predicate p(χ)
(where χ is an LTL formula) is true on P in the GLTS, if LTL formula χ ∈ L(P).
Theorem 1 An mLTL formula κ holds on an adaptive program AP , if and only if

T(κ) holds on the GLTS of
−→AP .

Proof We should prove that AP |� κ , iff Υ Ψ−−→AP |� T(κ), where Ψ is the LTL property

set of κ . According to Lemma 1, AP |� κ , iff
−→AP |� κ . We only prove that

−→AP |�
κ ⇒ Υ Ψ−−→AP |� T(κ)

– If κ = [χ],−→AP |� [χ] means for each state trace t of
−→AP, t |� [χ]. Thus, t’

mode trace mt |�m [χ]. Definition of GLTS implies that there exists a mode trace

mt in
−→AP for each mode trace of Υ Ψ−−→AP correspondingly. Since mt |�m [χ], we

have ĩ1 |� f in χ , where i1 is the first interval of mt . The state sequence of first

interval of each mode trace in
−→AP satisfy the LTL formula χ . That is to day the

behavior of the non-adaptive program of the first mode on the mode traces satisfies
χ . Thus, p(χ) holds on the first state of all state traces in Υ Ψ−−→AP . We conclude that

Υ Ψ−−→AP |� p(χ).

– If κ = @v,
−→AP |� @v means the state sequence of first interval of each mode

trace in
−→AP satisfy the LTL formula �v. Proved as the same as [χ], proposition

p(�v) holds on the first state of each state traces in Υ Ψ−−→AP . Thus, Υ Ψ−−→AP |� @v.

– If κ = κ1 ∧ κ2,
−→AP |� κ1 ∧ κ2 means that

−→AP |� κ1 and
−→AP |� κ2. Thus,

Υ Ψ−−→AP |� T(κ1) and Υ Ψ−−→AP |� T(κ2).

– If κ = ¬κ1,
−→AP |� ¬κ1 means that κ1 does not hold on the first mode of all

mode traces. Thus, T(κ1) does not hold on first state of all state traces in Υ Ψ−−→AP .

Υ Ψ−−→AP |� ¬T(κ1).

– If κ = ©mκ1,
−→AP |� ©mκ1 means that κ1 holds from the second mode in all

mode traces. Thus, T(κ1) should hold from the second state in all state traces of
Υ Ψ−−→AP . Υ Ψ−−→AP |� ©T(κ1).

– If κ = κ1Umκ2,
−→AP |� κ1Umκ2 means that κ1 holds on modes until κ2 holds in

each mode trace. Thus, T(κ1) should hold on states until T(κ2) holds in each state
trace of Υ Ψ−−→AP . Υ Ψ−−→AP |� T(κ1)UT(κ2).

T(♦mκ1), T(�mκ1), T(κ1 ∨ κ2), T(κ1 → κ2) and T(κ1 ↔ κ2) will also be proved
because these operators can be expressed by the above basic operators. Υ Ψ−−→AP |�
T(κ)⇒ −→AP |� κ could be proved similarly. ��

According to the three steps of mLTL model checking mentioned above, the algo-
rithm of mLTL model checking based on LTL is presented in Algorithm 1.

At first, the adaptive program is normalized (line 2). All LTL formulae are extracted
from κ and stored in the array ltlpropset (line 3). All non-adaptive programs are also

123

www.manaraa.com

Development of global specification 805

Algorithm 1: mLTL model checking algorithm
Data: an mLTL formula κ , an adaptive program AP .
Result: YES or print the error trace.

1 begin

2
−−→AP ←− normali ze(AP)

3 ltlpropset ←− exract LT L(κ)

4 programs ←− extract Programs(
−−→AP)

5 for p ∈ programs do
6 for f ∈ ltlpropset do
7 R(p, f)←− modelcheck(p, f)

8 glts ←− contructGLT S(AP, R)
9 ltl ←− trans f orm_mLT L(κ)

10 modelcheck(glts, ltl)

extracted from AP , processed and stored in the array programs (line 4). Then, these
LTL formulae will be checked on each non-adaptive program (lines 5–7). The LTL
model checking is available in LTSA, and the checking result is a boolean matrix R
that indicates the labelling function L of the GLTS. The GLTS is constructed based

on the matrix R and
−→AP (line 8), and κ is transformed to an LTL formula ltl (line 9).

Finally, ltl is checked on glts (line 10).

Since the number of non-adaptive programs in
−→AP is not only dependent on the

number of non-adaptive programs and adaptations in AP , but also on the structure
of programs and adaptations, we analyze the complexity of mLTL model checking

on the normalized adaptive program. Assume a normalized adaptive program
−→AP

contains n programs P1,P2, . . . ,Pn , and m adaptations. The complexity of mLTL
model checking is calculated based on LTL model checking problem. As discussed in
[26,44], the time and space complexity of LTL model checking χ on transition system
T S are O(2|χ | ∗ |T S|). We assume all programs are of similar size |P| : |P| ≈ |Pi |,
for all i . We denote |−→AP| as the size of the GLTS of

−→AP . If the size of the property
set of κ is k and the average size of LTL formula in κ is |χ |, the time complexity of

our algorithm is O(n ∗ k ∗ 2|χ | ∗ |P| + 2|T(κ)| ∗ |−→AP|) and the space complexity is

O(max(2|χ | ∗ |P|, 2|T(κ)| ∗ |−→AP|)).

6 Implementation and experiments

In the previous sections, we discuss how to model, specify and verify adaptive pro-
grams. A Modelling and Analysis Tool for Adaptive Programs (MATAP) has been
developed and this section will be devoted to its implementation. We will use the ACP
case to illustrate how to develop global specification of adaptive software.

We choose LTSA as the LTL model checker for adaptive programs. LTSA is a ver-
ification tool that mechanically checks that the specification of a system satisfies the
properties required of its behaviour. A system in LTSA is modelled as a set of inter-
acting finite state machines. LTSA uses the FSP process calculus to specify behaviour
models and Fluent Linear Temporal Logic (FLTL) to define properties. A fluent is a

123

www.manaraa.com

806 Y. Zhao et al.

Fig. 7 MATAP architecture

property of the world that holds after it is initiated by an action and ceases to hold
when terminated by another action. We use fluent to define propositions hold on states
of the adaptive program.

6.1 Architecture

The architecture of MATAP is shown in Fig. 7. MATAP is developed based on Eclipse2

platform, and consists of a visual modelling tool for adaptive programs, an mLTL
formula editor for specifying global properties and an mLTL model checker.

To improve extensibility and interoperability, the modelling tool exports a XML
document for model checking. We extend the W3C’s State Chart XML (SCXML)3

by adding adaptation elements and define the Adaptation SCXML (ASCXML) to
store adaptive programs. Our mLTL model checker is based on LTSA which uses the
FSP process calculus to specify behaviour models and supports LTL model checking.
From the FSP description, LTSA generates a LTS model. MATAP uses LTSA for
LTL model checking in our mLTL model checking algorithm. According to the mLTL
model checking algorithm, the FSP Translator extracts non-adaptive programs from
the normalized adaptive program and translates them into FSP language. The LTL
formula Generator extracts LTL property set from an mLTL formula and transforms
the mLTL formula to an LTL formula by the transforming function as defined in Fig. 6.

2 http://www.eclipse.org/.
3 http://www.w3.org/TR/scxml/.

123

http://www.eclipse.org/
http://www.w3.org/TR/scxml/

www.manaraa.com

Development of global specification 807

Fig. 8 Modelling tool

Each extracted LTL formula will be checked on each FSP program generated by FSP
Translator. The checking result (true or false) and the adaptive program will be used
by GLTS Generator to construct the global labelled transition system and generate
another FSP program. Finally, the transformed LTL formula will be checked on this
FSP program, and mLTL model checker will print the result, YES or Error trace.

6.2 Modelling and specifying adaptive programs

SCXML is a general-purpose event-based state machine language in support of
Statecharts[21]. SCXML describes states, events, and transitions. States represent the
status of the system. Events represent what happens. Transitions move between states,
and are triggered by events. An open source Java implementation of SCXML is avail-
able from Apache.4 We add three elements to SCXML, “〈ini tialmode〉”, “〈mode〉”
and “〈adaptation〉”. The initialmode defines the initial program of an adaptive pro-
gram, and the mode defines the other non-adaptive programs. The adaptation defines
the adaptations among non-adaptive programs. The original SCXML elements are
under initialmode or mode elements. The modelling tool as shown in Fig. 8 has been
developed to model adaptive programs. Modes, states, transitions and adaptations can
be modelled visually, and an ASCXML document can be exported finally.

4 http://commons.apache.org/scxml/.

123

http://commons.apache.org/scxml/

www.manaraa.com

808 Y. Zhao et al.

Fig. 9 Behavior of SENDER in normal mode

Next, we use MATAP to illustrate modeling the non-adaptive and adaptive program
of ACP. For implementing mLTL model checking via LTSA, we also use the case to
show automatic translation of non-adaptive program to FSP.

The non-adaptive program is defined as a finite state machine, and the adaptive pro-
gram consists of a set of non-adaptive programs and adaptations among states of them.
In the MATAP modelling tool, we provide “Mode”, “InitialMode”, “InitialState”,
“State”, “Transition”, and “Adaptation” primitives to visual model the non-adaptive
programs and adaptations. The propositions hold on the state can also be defined on
it. The behavior model of SENDER in the normal mode is illustrated in Fig. 9. The
dotted lines are adaptations between normal and other non-adaptive programs.

When generating FSP program from the non-adaptive program in normalized adap-
tive programs, we map the action, state and transition to action, process name and action
prefix in FSP respectively. The generated FSP program of the normal3 in which get0
is the starting state and get1 is the ending state in Fig. 9 is as follow. Since GET1 is the
ending state, a new state GET1_ and the tao(τ) transition are inserted automatically.

S E N D E R _ n o r m a l 3 = (g d −> SEND0) ,
SEND0 = (s d 0 −> WFA0) ,
WFA0 = (a c k 0 −> GET1 | l o s e −> SEND0 | a c k 1 −> WFA0) ,
GET1 = (g d −> SEND1 | t a o −> GET1_) ,
GET1_ = (t a o −> GET1_) ,
SEND1 = (s d 1 −> WFA1) ,
WFA1 = (a c k 1 −> S E N D E R _ n o r m a l 3 | l o s e s −> SEND1 | g a c k 0 −> WFA1) .

There are two propositions “I N PU T ” and “SE N T ” that mean the data is read and
ready to be sent, and the data is sent successfully respectively. I N PU T holds on state
send0 and send1, SE N T on get1 after the action ack0 and get0 after the action
ack1. In FSP, LTS models are essentially based on actions or events. FSP introduces
fluent as a mean of describing abstract states of LTS models. Logical properties can be
specified in terms of fluents and analyzed using LTSA. Since the action gd (get data)
change the current to state send0 or send1 on which the proposition I N PU T holds.

123

www.manaraa.com

Development of global specification 809

A fluent I N PU T is generated as follow. It means that when the action gd occurs the
proposition I N PU T will become true immediately, and when other actions occur it
will become f alse immediately.

s e t ACTIONS = { gd , s d 0 , s d 1 , a c k 0 , a c k 1 , l o s e , t a o }
f l u e n t INPUT = <{ g d } , ACTIONS \ { g d } > i n i t i a l l y 0
f l u e n t SENT = <{ a c k 0 , a c k 1 } , ACTIONS \ { a c k 0 , a c k 1 } > i n i t i a l l y 0

After modeling the adaptive program, we should specify them by mLTL formulae.
We define the concrete syntax for mLTL operators and use the same syntax of FLTL
in LTSA for LTL operators. Gm, Fm,Xm and Um are used to present �m,♦m,©m and
Um respectively.

The global properties of ACP from Eq. 9 to 15 are specified as follows:
Gm (@ n o r m a l −> [[] (INPUT −> <> SENT)])
Gm (@ n o r m a l −> [[] <> INPUT])
Gm ([[] (INPUT −> <> SENT)])
Gm ([! [] <> INPUT] −> Xm [[] <> INPUT])
Fm ([[] (INPUT −> <>DATACOMPRS)])
Gm ([[] ((DES64ENCD −> ! < > DES128ENCD) && (DES128ENCD −> ! < > DES64ENCD))])
Gm ([[] (INPUT −> <>ENCRYPERR)] −> Fm ([[] (INPUT −> <>SENT)]))

6.3 Model checking using LTSA

When the adaptive program and its specification have been developed, the mLTL
model checker will take them as input and checking properties on the program auto-
matically. We use the propertyGm(@normal − >[[](INPUT− ><>SENT)])
to illustrate the process of mLTL model checking.

The process of checking the mLTL formula consists of four steps.

1. Generating an FSP program F S Pi for each non-adaptive programs. The model
checker first normalizes the adaptive program and generates an FSP program for
each non-adaptive programs as discussed previously.

2. Extract LTL formulae LT Li from the mLTL formula κ , and transform κ to an LTL
formula LT Lκ . From the mLTL formula, two LTL formulae are extracted, �v and
[](INPUT − ><> SENT). The formula [](INPUT − ><> SENT])will
be checked on each FSP program. For the formula �v, a special fluent is used in
the FSP program generated from the GLTS which will be discussed in step (3).
Then the mLTL formula is transformed to an LTL formula [](AT_NORMAL ->
LTL1) defined by FLTL, where AT_NORMAL and LTL1 are asserts generated in
step (3).

3. Generating an FSP program F S PG from GLTS. An FSP program will be generated
from the GLTS of the adaptive program. After being normalized, the adaptive
program AC P has 24 non-adaptive programs and 144 adaptations among them.
According to modes and adaptations in GLTS, the action, the process name and
the action prefix could be generated in the FSP program. The proposition on each
mode of GLTS is a set of LTL formulae that means these formulae hold the the
mode. After LTL formula checking on each FSP program, the LTL formula set on
each mode of GLTS is calculated.

The whole adaptation set and single adaptation set for each mode are generated
firstly as follows.

123

www.manaraa.com

810 Y. Zhao et al.

/ ∗ s e t o f a l l a d a p t a t i o n s ∗ /
s e t ADAPTATIONS = { e 1 1 , e 1 2 , e 2 1 , e 2 2 , e 3 1 , e 3 2 , e 4 1 ,

e 4 2 , e 5 1 , e 5 2 , e 6 1 , e 6 2 , e 7 1 , e 7 2 ,
e 8 1 , e 8 2 , e 9 1 , e 9 2 , e 1 0 1 , e 1 0 2 , e 1 1 1 ,
e 1 1 2 , e 1 2 1 , e 1 2 2 , e 1 3 1 , e 1 3 2 , e 1 4 1 , e 1 4 2 ,
e 1 5 1 , e 1 5 2 , e 1 6 1 , e 1 6 2 , e 1 7 1 , e 1 7 2 , e 1 8 1 , e 1 8 2 }

/ ∗ s e t o f a d a p t a t i o n s w h i c h c h a n g e t h e a d a p t i v e
p r o g r a m i n t o a mode ∗ /
s e t ADAPT2NORMAL_1 = { e 2 1 , e 2 2 , e 3 1 , e 3 2 , e 6 1 , e 6 2 }

After adaptations in ADAPT2NORMAL_1, the ACP transits into the behavioral
mode NORMAL_1. Thus, fluent and asserts could be generated to denote the
mode name. For instance, the program NORMAL_1, NORMAL_2, NORMAL_3, and
NORMAL_4 have the same name NORMAL. We can see that the mLTL formula
@normal can be expressed directly if we have the assert to denote the mode name.
f l u e n t AT_NORMAL_1 = <ADAPT2NORMAL_1 ,

ADAPTATIONS \ ADAPT2NORMAL_1 > i n i t i a l l y 0

a s s e r t AT_NORMAL = (AT_NORMAL_1 | | AT_NORMAL_2 | | AT_NORMAL_3
| | AT_NORMAL_4)

Then, a fluent could be generated for each LTL formula LT Li by the result of
LT Li checking on each F S Pi . The fluent means that on which mode the LT Li

formula holds. We use a set to describe adaptations that transit other modes to the
modes on which the LT Li formula holds. Since [](INPUT − ><> SENT) holds
on all FSP program F S Pi , its fluent is as follow:
s e t LTL1SET = { e 1 1 , e 1 2 , e 2 1 , e 2 2 , e 3 1 , e 3 2 , e 4 1 , e 4 2 , e 5 1 , e 5 2 , e 6 1 , e 6 2 , e 7 1 , e 7 2 ,

e 8 1 , e 8 2 , e 9 1 , e 9 2 , e 1 0 1 , e 1 0 2 , e 1 1 1 , e 1 1 2 , e 1 2 1 , e 1 2 2 , e 1 3 1 , e 1 3 2 ,
e 1 4 1 , e 1 4 2 , e 1 5 1 , e 1 5 2 , e 1 6 1 , e 1 6 2 , e 1 7 1 , e 1 7 2 , e 1 8 1 , e 1 8 2 }

f l u e n t LTL1 = (LTL1SET , ADAPTATIONS \ LTL1SET) i n i t i a l l y 0

4. Checking LT Lκ on F S PG . The LT Lκ assert PROP1 = ([](AT_NORMAL
-> LTL1)) is checked on the FSP program F S PG .

6.4 Experiments

In this subsection, we illustrate the performance of our approach by using the global
properties of ACP from Eqs. 9 to 15 to model check the ACP adaptive program. We
have successfully verified all of the above properties. All experiments were evaluated
on a Lenovo Thinkpad computer with 1.20GHz Intel Core 2 Duo Processor and 4GB
of RAM, running Windows 7.

The normalization of ACP has 24 non-adaptive programs and 144 adaptations
among them. The GLTS of normalized ACP is shown in Fig. 10. The verification
result, execution time and memory usage of each global property is listed in Table 1.

In order to study the scalability of our approach, we synthesized a series of normal-
ized adaptive programs by duplicating the non-adaptive programs n times (where n is
2,4,8) in the normalized ACP program. We measured the execution time and memory
consumption of each global property on the synthesized adaptive programs. Fig. 11a
shows the experimental results of the average execution time of model checking for
the above seven global properties, where the x-axis represents the number of non-
adaptive programs in the normalized adaptive programs and the y-axis represents the

123

www.manaraa.com

Development of global specification 811

Fig. 10 The GLTS of normalized ACP

Table 1 Performance of mLTL
model checking on ACP

Global property Verification Execution Memory
result time (ms) usage (MB)

Property(1) (Eq. 9) TRUE 110 36

Property(2) (Eq. 10) FALSE 153 33

Property(3) (Eq. 11) TRUE 100 35

Property(4) (Eq. 12) FALSE 264 33

Property(5) (Eq. 13) TRUE 110 37

Property(6) (Eq. 14) TRUE 136 34

Property(7) (Eq. 15) TRUE 211 37

time elapsed during executions. From the results we noticed that the time consumed by
our approach is linear to the number of non-adaptive programs in a normalized adaptive
program. Since there are two LTL formulae in the property (4) and (7), the execution
time of the two properties are about two times of other properties. Figure 11b shows
the memory usage where the x-axis represents the number of non-adaptive programs
in the normalized adaptive program and the y-axis represents the memory occupied
during model checking. From these results, we can see that the memory usage of
our approach is approximately linear to the number of non-adaptive programs in a
normalized adaptive program.

7 Related work

Numerous techniques have been proposed to address various issues in formalizing
adaptation. Bradbury et al. [12] discussed various approaches based on graphs, process
algebras, logic and other formalisms are used to specify adaptive systems. Graph-based

123

www.manaraa.com

812 Y. Zhao et al.

(a)

(b)

Fig. 11 Performance of mLTL model checking

approaches [5,25,42] use graph rewriting rules to specify dynamism. Process Alge-
bra approaches use a variety of process algebras such as Calculus of Communicat-
ing Systems (CCS), Communicating Sequential Processes (CSP), and π -calculus to
describe the semantics of interactions and reconfigurations of components and connec-
tors [1,15,27,39]. Architectural Description Language (ADL) [34] models adaptive
software as components and connectors, and adaptation as reconfiguration of connec-
tions. Dynamic reconfiguration enables changing the architectures of adaptive soft-
ware at runtime. Generally, these approaches have focused on structural adaptation. A
few efforts, including those that use process algebras to specify the behavior of adap-
tive programs [1,15,22], have formally specified the behavioral changes of adaptive
programs.

Zhang et al. [47–49] proposed a model-based development approach for dynam-
ically adaptive software. An adaptive program is modelled as the composition of a
finite number of steady-state programs and the adaptations among these programs.

123

www.manaraa.com

Development of global specification 813

Three commonly occurring basic adaptation models help to construct the adaptations
of the adaptive program from one domain to another. A-LTL [47], an adaptation-based
extension to linear temporal logic specifies the above three commonly used adaptation
semantics. By specification composition, they specify the whole requirements for an
adaptive program. Their modular verification approach [49] not only reduces the ver-
ification complexity by a factor of n, where n is the number of steady-state programs
encompassed by the adaptive program, but also further reduces verification cost by
supporting verification of incrementally developed adaptive software. mLTL model
checking has the same space complexity. Since the normalized adaptive program has
n multiple non-adaptive programs than the adaptive program, the time complexity of
mLTL model checking is n multiple than the modular approach for A-LTL.

Goal-based modeling [20,24,36,46] has also been used for specifying dynami-
cally adaptive software. A common feature of these works is that they assume that all
adaptation choices are known and enumerated at design time. Hence, unanticipated
adaptations are difficult to specify and analyze. Self-adaptive systems are dynamic
in nature and allow for changes in the manner in which they adapt throughout their
deployment lifetime. As a result of this dynamism, some behavioral modes reached
during adaptation may be undesirable and harmful to the overall system goals. Geor-
gas et al. [18] improved the dependability of such systems by developing facilities
for adaptation recording, enhancing the configuration visibility over the entire system
lifetime, and providing user-driven support for architectural recovery from undesirable
configurations. However, mLTL does not require all possible alternative adaptations.
The unknown behavior of adaptive programs at runtime may be monitored and the exe-
cution traces are generated and analyzed by a model checker to verify its conformance
to the formal specification [6]. The runtime verification of adaptive software [19] may
be used to solve the model checking problem. Similarly, the adaptive program defined
in this paper can be generated at runtime, and mLTL can be used to define formal
specification.

For the purpose of modelling and verification of software, different models of state
machine have been proposed. The statecharts are hierarchical finite state machines
[21], in which vertices can be ordinary states, or superstates which are FSMs them-
selves. The superstates offer a convenient mechanism to specify systems in a stepwise
refinement manner and FSMs need to be specified only once and can then be reused
in different contexts. Various approaches [2,16,17,35,43,45] have been proposed to
the formal verification of statecharts using model checking. Most approaches rely
on translating the hierarchical structure into the flat representation of the input lan-
guage of the model checker. In this paper, our model has only two levels and the
global specification distinguishes different FSMs. Maraninchi and Rémond [30,31]
proposed an automata model in real-time systems considering the independent run-
ning modes, which are similar to the behavioral modes in this paper. Model checking
of their automata does not support specifying mode related specifications either.

8 Conclusion

In this paper, we propose an approach to formal development of global specifications
for dynamically adaptive programs. mLTL does not require all possible alternative

123

www.manaraa.com

814 Y. Zhao et al.

adaptations to be specified during designing systems. mLTL integrated with LTL and
A-LTL could specify the adaptive software effectively.

We believe that this paper offers several contributions in the domain of adaptive
software by providing an approach to specify and verify the global properties for
future ultra large scale systems. Global specification provides a novel way to specify
adaptive software and thus enables a new perspective. It is simple and sufficiently
effective for continuous evolution and unknowable behavior when designing complex
software systems in the future.

It is noticed that several issues require further investigations. We may extend FSP
language to support modelling of dynamic adaptation for intuitionistic description and
develop an extension of LTSA for mLTL model checking. Model checking algorithm
in this paper is not so efficient by the reason of separated verification of non-adaptive
programs on LTL formulae, and more efficient model checking algorithm needs to be
developed. Our approach only focuses on the behavioral aspect of adaptive programs,
and the importance of expressing adaptations at the architectural level is thus realized.
Applying our approach with an appropriate ADL representation will provide a more
comprehensive solution to the development of adaptive programs.

Acknowledgments This work has been supported in part by the National Natural Science Foundation of
China (NSFC) under the Grant No.61003017 and the Project of National Laboratory of Software Develop-
ment Environment under the Grant No.SKLSDE-2010ZX-05.

References

1. Allen R, Douence R, Garlan D (1998) Specifying and analyzing dynamic software architectures.
In: Proceedings of the 1st International Conference on Fundamental Approaches to Software Engi-
neering, Springer Verlag, p 21

2. Alur R, Yannakakis M (2001) Model checking of hierarchical state machines. ACM Trans Program
Lang Syst 23(3):273–303

3. Avizienis A, Laprie JC, Randell B, Landwehr C (2004) Basic concepts and taxonomy of dependable
and secure computing. IEEE Trans Dependable Secur Comput 1(1):11–33

4. Baier C, Katoen JP (2008) Principles of model checking. MIT Press, Cambridge
5. Baresi L, Heckel R, Thöne S, Varro D, Varró D, Milano PD (2004) Style-based refinement of dynamic

software architectures. In: Proceeding of 4th Working IEEE/IFIP Conference on Software Architecture,
IEEE, pp 155–164

6. Barringer H, Goldberg A, Havelund K, Sen K (2004) Program monitoring with ltl in eagle. In: Pro-
ceedings of 18th IEEE International Parallel and Distributed Processing Symposium, IEEE Computer
Society, Washington, DC, p 264

7. Bauer A, Leucker M, Schallhart C (2010) Comparing ltl semantics for runtime verification. J Logic
Comput 20(3):651–674

8. Benedetti M, Cimatti A (2003) Bounded model checking for past ltl. In: Proceedings of the 9th inter-
national conference on Tools and algorithms for the construction and analysis of systems, TACAS’03,
Springer, Berlin/Heidelberg, pp 18–33

9. Bertrand D, Déplanche AM, Faucou S, Roux OH (2008) A study of the aadl mode change protocol.
In: Proceedings of the 13th IEEE International Conference on Engineering of Complex Computer
Systems, IEEE Computer Society, Washington, DC, pp 288–293

10. Biyani KN, Kulkarni SS (2008) Assurance of dynamic adaptation in distributed systems. J Parallel
Distrib Comput 68(8):1097–1112

11. Bodden E (2004) A lightweight ltl runtime verification tool for java. In: the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, OOPSLA ’04,
ACM, New York, pp 306–307

123

www.manaraa.com

Development of global specification 815

12. Bradbury JS, Cordy JR, Dingel J, Wermelinger M (2004) A survey of self-management in dynamic
software architecture specifications. In: Proceedings of the 1st ACM SIGSOFT workshop on Self-
managed systems, ACM, New York, pp 28–33

13. Broy M, Leuxner C, Sitou W, Spanfelner B, Winter S (2009) Formalizing the notion of adaptive system
behavior. In: Proceedings of the (2009) ACM symposium on Applied Computing. ACM, New York,
pp 1029–1033

14. Bruni R, Corradini A, Gadducci F, Lluch Lafuente A, Vandin A (2012) A conceptual framework for
adaptation. In: Lara J, Zisman A (eds) Fundamental Approaches to Software Engineering, Lecture
Notes in Computer Science, vol 7212. Springer, Berlin/Heidelberg, pp 240–254

15. Canal C, Pimentel E, Troya JM (1999) Specification and refinement of dynamic software architectures.
In: Proceedings of the TC2 First Working IFIP Conference on Software Architecture. Kluwer B.V.,
Deventer, pp 107–126

16. Chan W, Anderson RJ, Beame P, Burns S, Modugno F, Notkin D, Reese JD (1998) Model checking
large software specifications. IEEE Trans Softw Eng 24(7):498–520

17. Clarke EM, Heinle W (2000) Modular translation of statecharts to smv. Carnegie-Mellon University
School of Computer Science, Tech. rep., Pittsburgh

18. Georgas JC, van der Hoek A, Taylor RN (2005) Architectural runtime configuration management in
support of dependable self-adaptive software. ACM SIGSOFT Softw Eng Notes 30:1–6

19. Goldsby HJ, Cheng BH, Zhang J (2008a) Models in software engineering. In: Chap AMOEBA-RT:
Run-Time Verification of Adaptive Software. Springer, Berlin/Heidelberg, pp 212–224

20. Goldsby HJ, Sawyer P, Bencomo N, Cheng BHC, Hughes D (2008b) Goal-based modeling of dynami-
cally adaptive system requirements. In: Proceedings of the 15th Annual IEEE International Conference
and Workshop on the Engineering of Computer Based Systems, IEEE Computer Society, ECBS ’08,
Washington, DC, pp 36–45

21. Harel D (1987) Statecharts: a visual formalism for complex systems. Sci Comput Program 8(3):231–
274

22. Kramer J, Magee J (1998) Analysing dynamic change in software architectures: a case study.
In: Proceedings of the 4th International Conference on Configurable Distributed Systems, IEEE Com-
puter Society, Washington, DC, p 91

23. Kramer J, Magee J (2007) Self-managed systems: an architectural challenge. In: Future of software
engineering. IEEE Computer Society, Washington, DC, pp 259–268

24. Lapouchnian A, Yu Y, Liaskos S, Mylopoulos J (2006) Requirements-driven design of autonomic
application software. In: Proceedings of the 2006 conference of the Center for Advanced Studies on
Collaborative research, CASCON ’06, IBM Corp., Riverton

25. Le Métayer D (1998) Describing software architecture styles using graph grammars. IEEE Trans Softw
Eng 24(7):521–533

26. Lichtenstein O, Pnueli A (1985) Checking that finite state concurrent programs satisfy their linear
specification. In: Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, ACM, New Yrok, pp 97–107

27. Magee J, Kramer J (1996) Dynamic structure in software architectures. In: Proceedings of the 4th
ACM SIGSOFT Symposium on Foundations of Software Engineering. ACM, New York, pp 3–14

28. Magee J, Kramer J (2006) Concurrency: state models & Java programs. Wiley, New York
29. Malek S, Edwards G, Brun Y, Tajalli H, Garcia J, Krka I, Medvidovic N, Mikic-Rakic M, Sukhatme

GS (2010) An architecture-driven software mobility framework. J Syst Softw 83(6):972–989
30. Maraninchi F, Rémond Y (1998) Mode-automata: about modes and states for reactive systems.

In: Proceedings of the 7th European Symposium on Programming. Springer, New York, pp 185–199
31. Maraninchi F, Rémond Y (2003) Mode-automata: a new domain-specific construct for the development

of safe critical systems. Sci Comput Program 46(3):219–254
32. Martin L, Christian S (2009) A brief account of runtime verification. J Logic Algebr Program

78(5):293–303
33. McKinley PK, Sadjadi SM, Kasten EP, Cheng BHC (2004) Composing adaptive software. Computer

37(7):56–64
34. Medvidovic N, Taylor RN (2000) A classification and comparison framework for software architecture

description languages. IEEE Trans Softw Eng 26(1):70–93
35. Mikk E, Lakhnech Y, Siegel M, Holzmann GJ (1998) Implementing statecharts in promela/spin.

In: Proceedings of the Second IEEE Workshop on Industrial Strength Formal Specification Techniques,
IEEE Computer Society, WIFT ’98, Washington, DC, pp 90

123

www.manaraa.com

816 Y. Zhao et al.

36. Morandini M, Penserini L, Perini A (2008) Modelling self-adaptivity: a goal-oriented approach.
In: Proceedings of the 2008 Second IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, IEEE Computer Society, SASO ’08, Washington, DC, pp 469–470

37. Morin B, Barais O, Nain G, Jezequel JM (2009) Taming dynamically adaptive systems using models
and aspects. In: Proceedings of the 31st International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, pp 122–132

38. Northrop L, Feiler P, Gabriel R, Goodenough J, Linger R, Kazman R, Schmidt D, Sullivan K, Wallnau K
(2006) Ultra-large-scale systems-the software challenge of the future. Software Engineering Institute,
Carnegie Mellon University, Tech. rep., Pittsburgh

39. Oquendo F (2004) π -adl: an architecture description language based on the higher-order typed
π -calculus for specifying dynamic and mobile software architectures. ACM SIGSOFT Softw Eng
Notes 29(3):1–14

40. Sadjadi SM, McKinley PK, Kasten EP (2003) Architecture and operation of an adaptable communica-
tion substrate. In: Proceedings of the 9th IEEE Workshop on Future Trends of Distributed Computing
Systems, IEEE Computer Society, p 46

41. Salehie M, Tahvildari L (2009) Self-adaptive software: Landscape and research challenges. ACM Trans
Auton Adap Syst 4(2):1–42

42. Taentzer G, Goedicke M, Meyer T (1998) Dynamic change management by distributed graph trans-
formation: Towards configurable distributed systems. In: Proceedings of 6th International Workshop
on Theory and Application of Graph Transformations, Springer, Berlin, pp 179–193

43. Thums A, Schellhorn G, Ortmeier F, Reif W (2004) Interactive verification of statecharts. In: Ehrig H,
Damm W, Desel J, Groe-Rhode M, Reif W, Schnieder E, Westkmper E (eds) Integration of Software
Specification Techniques for Applications in Engineering, Lecture Notes in Computer Science, vol
3147. Springer, Berlin/Heidelberg, pp 355–373

44. Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification. In: Pro-
ceedings of 1st IEEE Symposium on Logic in Computer Science, IEEE Computer Society, Cambridge,
pp 332–344

45. Varró D (2002) A formal semantics of uml statecharts by model transition systems. In: Corradini A,
Ehrig H, Kreowski H, Rozenberg G (eds) Graph Transformation, Lecture Notes in Computer Science,
vol 2505. Springer, Berlin / Heidelberg, pp 378–392

46. Yu Y, Lapouchnian A, Liaskos S, Mylopoulos J, Leite J (2008) From goals to high-variability software
design. In: An A, Matwin S, Ras Z, Slezak D (eds) Foundations of Intelligent Systems, Lecture Notes
in Computer Science, vol 4994. Springer, Berlin/Heidelberg, pp 1–16

47. Zhang J, Cheng BH (2006a) Model-based development of dynamically adaptive software. In: Proceed-
ings of the 28th International Conference on Software Engineering, ACM, New York, pp 371–380

48. Zhang J, Cheng BH (2006b) Using temporal logic to specify adaptive program semantics. J Syst Softw
79(10):1361–1369

49. Zhang J, Goldsby HJ, Cheng BHC (2009) Modular verification of dynamically adaptive systems.
In: Proceedings of the 8th ACM International Conference on Aspect-oriented Software Development,
ACM, New York, pp 161–172

123

www.manaraa.com

Copyright of Computing is the property of Springer Science & Business Media B.V. and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

	Development of global specification for dynamically adaptive software
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Adaptive program and specification
	2.2 Motivation

	3 Formal model
	3.1 Adaptive programs
	3.2 The ACP study case

	4 Mode-supported Linear Temporal Logic
	4.1 Traces of adaptive programs
	4.2 Syntax and semantics of mLTL
	4.3 Global specification of ACP

	5 mLTL model checking
	5.1 Normalization of adaptive programs
	5.2 Global semantic of adaptive programs
	5.3 LTL-based model checking

	6 Implementation and experiments
	6.1 Architecture
	6.2 Modelling and specifying adaptive programs
	6.3 Model checking using LTSA
	6.4 Experiments

	7 Related work
	8 Conclusion
	Acknowledgments
	References

